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RESUMO

RIBEIRO, P. C. Microrganismos detectados em areas contaminadas por residuos de
minerag&o: revisao dos principais bioindicadores. 2022. 55 f. Monografia (MBA em Gestéo
de Areas Contaminadas, Desenvolvimento Urbano Sustentavel e Revitalizagdo de Brownfields)
— Escola Politécnica, Universidade de S&o Paulo, Sdo Paulo, 2022.

Um dos assuntos que mais esteve em evidéncia nos ultimos anos devido ao rompimento de duas
barragens, foi a contaminacéo causada pelos elementos potencialmente toxicos nesses locais e
as consequéncias futuras para o meio ambiente. Dentre os componentes do ambiente, o solo €
um dos que mais sofre modificacdes, principalmente em sua popula¢édo microbiana local. Essa
populagdo microbiana pode sofrer diferentes interferéncias de acordo com o elemento
potencialmente toxico presente e sua concentracdo, apresentando resultados positivos ou
negativos. Por esses fatores, a diversidade microbiana € hoje considerada um importante
bioindicador de ambientes contaminados. Neste contexto, o objetivo desta pesquisa foi fazer
uma revisdo bibliografica sobre os principais microrganismos (bactérias) empregados como
bioindicadores em areas de mineracdo contaminadas por elementos potencialmente toxicos.
Neste estudo foram priorizados trabalhos publicados no periodo de 2010 a 2021. As bases de
dados utilizadas foram Scopus, Web of Science, Science Direct e Scielo. Os resultados
encontrados indicaram que a alteracdo na comunidade microbiana do solo em areas de
mineracdo depende: dos elementos potencialmente toxicos presentes na area contaminada,
concentracdes destes elementos, parametros do solo, clima do local, entre outros fatores. Em
geral, cada estudo detectou diferentes filos, ordens e géneros de bactérias, evidenciando ainda
mais a importancia da criacdo e utilizacdo de um banco de dados com todas essas informacdes
detalhadas disponiveis para consulta da comunidade cientifica. Além disso, percebe-se que
avancos na area da gendmica tem possibilitado analises mais detalhadas e completas sobre a

diversidade microbioldgica e sua interagdo com os elementos potencialmente toxicos.

Palavras-chave: Bactérias; Chumbo; Zinco; Cadmio; Arsénio; Mineragdo



ABSTRACT

RIBEIRO, P. C. Microorganisms detected in contaminated areas by mining residues: a
review of the main bioindicators. 2022. 55 p. Monografia (MBA em Gestdo de Areas
Contaminadas, Desenvolvimento Urbano Sustentavel e Revitalizacdo de Brownfields) — Escola
Politécnica, Universidade de Séo Paulo, S&o Paulo, 2022.

One of the issues that has been most in evidence in recent years due to the rupture of two dams
was the contamination caused by potentially toxic elements in these places and the future
consequences for the environment. Among the components of the environment, the soil is one
of the most affected, especially in its local microbial population. This microbial population can
suffer different interferences according to the potentially toxic element present and its
concentration, presenting positive or negative results. Due to these factors, microbial diversity
is now considered an important bioindicator of contaminated environments. In this context, the
objective of this research was to review the literature on the main microorganisms (bacteria)
used as bioindicators in mining areas contaminated by potentially toxic elements. In this study,
works published between 2010 and 2021 were prioritized. The databases used were Scopus,
Web of Science, Science Direct and Scielo. The results found indicated that the alteration in the
soil microbial community in mining areas depends on: the potentially toxic elements present in
the contaminated area, concentrations of these elements, soil parameters, local climate, among
other factors. In general, each study detected different phyla, orders and genera of bacteria,
further highlighting the importance of creating and using a database with all this detailed
information available for consultation by the scientific community. Furthermore, advances in
genomics have enabled more detailed and complete analyzes of microbiological diversity and

its interaction with potentially toxic elements.

Keywords: Bacteria; Lead; Zinc; Cadmium; Arsenic; Mining
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1. INTRODUCAO

A atividade de mineracgdo é de extrema importancia para a economia brasileira. Dentre
o0s principais fatores que explicam essa afirmacdo, destaca-se o equilibrio econémico causado
por essa atividade, a influéncia histérica, sua relagdo com fenémenos sociais, grande influéncia
no Produto Interno Bruto (PIB) nacional e geragdo de empregos.

Com o inicio da extracdo de minérios na época do Brasil colonial, a mineracao atraiu
grandes interesses internacionais que culminaram em grande parte na ocupacdo nacional e
geracdo de riquezas. Além disso, a mineragdo esta diretamente ligada com o crescimento e
desenvolvimento de outras atividades, oferecendo produtos para industrias siderdrgicas,
petroquimica, metallrgicas e fertilizantes. Por esses motivos, o setor sempre recebeu altos
investimentos e modernizagdo ao longo do tempo.

Ao mesmo tempo em que a mineracdo traz varios beneficios para o Brasil, na contraméo
do desenvolvimento se destaca a preocupagdo com 0 meio ambiente e todos 0s seres vivos que
dependem deste meio para sobreviver. Ela gera varios impactos positivos como também
impactos ambientais negativos (degradacdo do solo, 4gua e ar). A mineragcdo, por ser uma
atividade que degrada o meio ambiente, ela deve ser planejada. As atividades de mineragéo
devem seguir o Plano de Recuperagio de Areas Degradadas (PRAD) e o Estudo de Impacto
Ambiental e Relatdrio de Impacto Ambiental (EIA/RIMA).

Dois acontecimentos atuais mostram com clareza o quanto a atividade de mineragédo
pode vir a degradar o meio ambiente: o rompimento da barragem em Mariana (MG) em 2015,
que atingiu paisagens naturais chegando ao rio Doce, e a tragédia em Brumadinho (MG) em
2019 que resultou em muitas mortes, incluindo os animais e 0 homem. Considerados os dois
maiores desastres ambientais da histéria do Brasil relacionados com a mineracdo, tem-se
levantado muitas questdes sobre a contamina¢do do meio ambiente causada durante e apds a
extracao de minerios, e como quantificar e remediar esses locais.

Um dos maiores problemas causados pela atividade de mineracdo é a contaminagdo por
elementos potencialmente tdxicos no solo, agua superficial e subterrdnea, ar e biota. Sabe-se
gue alguns elementos potencialmente téxicos sdo encontrados de forma natural no meio
ambiente, dependendo da formacao e constituicdo do solo. Atividades antropogénicas como a
disposicdo de residuos e rejeitos podem potencializar e aumentar as concentracdes destes

elementos nos diferentes compartimentos. Dentre os elementos potencialmente toxicos mais
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citados na literatura relacionados com a mineracao, destaca-se o cobre (Cu), zinco (Zn), chumbo
(Pb), manganés (Mn), cadmio (Cd), cromo (Cr) e arsénio (As).

Reacdes como adsor¢do, oxidacdo, reducdo, precipitacdo e complexacdo mostram o
qudo complexo sdo os diferentes tipos de comportamento quimico dos elementos
potencialmente toxicos no solo. A disponibilidade desses elementos no solo é definida também
pelos processos de solubilidade e lixiviagdo. Outros fatores que também influenciam a
mobilidade desses elementos no solo sdo o potencial hidrogenidnico (pH), o potencial redox
(Eh), a capacidade de troca de cations (CTC), a matéria organica presente, a textura do solo
(areia, silte ou argila), temperatura, entre outros.

Além disso, todas essas caracteristicas do solo também podem influenciar na microbiota
local. De acordo com as condi¢des ambientais, pode-se encontrar diferentes microorganismos
adaptados ao solo. Para sobreviver, 0 microorganismo precisa responder fisiologicamente de
forma positiva as adversidades do ambiente. Dessa forma, estudos da microbiota local séo
importantes indicativos da contaminacdo no solo, o que classifica este grupo como
bioindicador.

Os microoganismos podem apresentar diferentes resultados na mobilidade dos
elementos potencialmente toxicos, aumentando ou até diminuindo devido a sua reten¢do no
solo. Baixas concentracGes dos elementos potencialmente tdxicos podem estimular o
crescimento bacteriano, embora estudos recentes também relatam que os microorganismos
conseguem se adaptar a locais com altas concentracGes desses elementos (Sun et al., 2020;
Sharma et al., 2021). Alguns dos principais processos em que 0S microorganismos podem
responder a presenca de elementos potencialmente tdxicos no solo sdo: precipitacdo,
complexagéo e cristalizagéo extracelular, acumulagéo intracelular dependente do metabolismo
microbiano, transformacdo redox, aumento de matéria organica, liberacdo do elemento na
forma volatil e geracdo de compostos guelantes desses elementos.

Pesquisas tendo como objetivo verificar as comunidades de microorganismos em funcéo
do estresse gerado pela presenca de elementos potencialmente toxicos no solo vem aumentando
nos ultimos anos. Além disso, é importante também analisar a biodiversidade microbiana,
caracterizando a espécie, a sua diversidade quimica e genética (comparando o grau de
parentesco de cada espécie). Diferentes métodos sdao empregados durante esta caracterizacéo
que serdo descritos posteriormente.

Logo, é extremamente importante a realizacdo de um levantamento bibliogréfico sobre

este tema, visando avaliar os principais avancos e as principais lacunas em areas de mineracéo.
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2. OBJETIVOS

O principal objetivo da presente pesquisa foi fazer uma reviséo bibliografica sobre os
principais microorganismos (mais especificamente as bactérias) empregados como
bioindicadores em areas de mineracdo contaminadas por elementos potencialmente toxicos,
bem como caracterizar estes microorganismos de acordo com o contaminante presente, as
condicdes de sobrevivéncia e fazer uma comparacdo entre os trabalhos ja existentes sobre o
tema. Também, foram abordadas as principais técnicas para deteccdo desses microorganismos
e qual a importancia de cada etapa para obtencdo dos resultados esperados.

3. JUSTIFICATIVA

Por ser um assunto que ganhou maior notoriedade recentemente, essa revisao
bibliografica é importante para organizar os trabalhos ja existentes, identificar pontos que
devem ser explorados de forma mais profunda nos préximos projetos de pesquisa e propor

novas abordagens sobre o tema como complemento dos resultados ja encontrados.

4. REFERENCIAL TEORICO

Nos ultimos cem anos, inumeras atividades humanas foram responsaveis pela
contaminacdo de ambientes naturais por elementos potencialmente téxicos (Jacob et al., 2018).
Atividades como desenvolvimento de recursos minerais, fundicdo e processamento de metais,
descarga de fébricas e producdo de produtos quimicos tém sido as maiores fontes de
contaminacdo por elementos potencialmente toxicos (Chen et al., 2014; Zhang et al., 2015).
Dentre eles, Cr, Pb, Cu, Cd e Zn apresentam alta toxicidade, biodisponibilidade duradoura e
retencdo de longo prazo (Liu et al., 2005; Chen et al., 2014). Além dos metais citados
anteriormente, tem-se também a contaminacdo por As, que é um metaloide, que é altamente
toxico.

Embora alguns elementos potencialmente toxicos sejam necessarios para 0S processos
fisioldgicos (como o Zn, Cu, entre outros), quando encontrados em altas concentracfes e com
acumulo excessivo em organismos Vvivos, podem apresentar desvantagens. Um ecossistema
sustentavel depende de comunidades microbianas funcionais que desempenham papel
significativo na decomposicdo da matéria orgénica, degradacdo de substancias toxicas,

ciclagem de nutrientes, fixacdo de nitrogénio e producgéo de fitohormdnios (Lewin et al., 2013;
14



Li et al., 2014; Goupil et al., 2015). A interacdo entre os elementos potencialmente toxicos e
microorganismos € relativamente nova e ainda é objeto de estudo de muitos pesquisadores.

Os microorganismos sdo sensiveis tanto ao excesso quanto a deficiéncia de elementos
potencialmente tdxicos no solo, mas também possuem a capacidade de se adaptar a essas
condigdes extremas (Kabata-Pendias, 2011). Dessa forma, eles podem ser considerados como
bioindicadores de locais contaminados com esses elementos. A répida capacidade de detectar
mudancas no ambiente, de reter metais e metaloides, de sobreviver em condi¢cdes adversas e a
facil deteccdo no solo os tornam ainda mais interessantes como bioindicadores (Zakaria et al.,
2004; Avidano et al., 2005; Parmar et al., 2016).

Dentre as técnicas utilizadas para identificacdo e associacdo de comunidades e espécies
microbianas com elementos potencialmente toxicos, pode-se citar o sequenciamento de alto
rendimento que nos permite identificar as composi¢cdes filogenéticas das comunidades
microbianas, métodos de cultura independente que conseguem amplificar sequéncias genéticas
com o objetivo de detectar espécies bacterianas e o pareamento de sequéncias de DNA
desconhecidas juntamente com um banco de dados, para comparacao de resultados ja obtidos
anteriormente em outros estudos (Ma et al., 2016; Li et al., 2017).

Algumas respostas bioldgicas que podem modificar a toxicidade e mobilidade dos
elementos potencialmente toxicos foram descritas em microorganismos por Gadd (1990, 2004)
e McBride (2007). O acimulo de elementos potencialmente toxicos nas paredes celulares
fangicas e bacterianas que podem imobilizar os metais, a liberacdo dos elementos
potencialmente toxicos na forma volatil que pode ser considerada um mecanismo de autodefesa,
a geracao de compostos quelantes de elementos potencialmente tdxicos, 0 aumento da matéria
organica, a precipitacdo e a complexacdo podem ser algumas das respostas encontradas na
literatura.

De acordo com Sumampouw e Risjani (2014), as bactérias mais encontradas em
ambientes contaminados e que s&o bioindicadoras de poluicdo em geral s&o: Streptococcus sp.,
Pseudomonas sp., Escherichia coli, Thiobacillus sp, Arcobacter sp., Vibrio sp., Clostridia sp e
Bifidobacterium pseudolongum. Além disso, foram encontrados diversos trabalhos
relacionando diferentes microorganismos com o0s elementos potencialmente tdxicos.
Piotrowska- Seget, Cycon e Kozdroj (2005) relacionaram a presenca de Zn e Cd com
Flavobacterium, Pseudomonas gladioli, Variovorax paradoxos e Methylobacterium
mesopilicum. O As, Cd, cobalto (Co), Cr, Cu, niquel (Ni), Pb, Zn e uranio (U) foram

relacionados por Rastogi et al. (2011) com Devosia, Rhodoplanes e Bradyrhizobiaceae.
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Kasemodel et al. (2019) avaliaram a contaminacdo de Pb, Zn e Cd em &reas de disposi¢do de
residuos de mineracao de Pb (escérias de fundicdo). Para isso, a area foi dividida em trés locais
diferentes para analises microbiologicas (NS e EW). Foi observado que as altas concentracdes
alteraram a comunidade microbiana do solo, e que os diferentes locais apresentaram diferentes
resultados. Os principais filos detectados nas amostras foram: Proteobacteria, Bacteroidetes e
Acidobacteria. Bactérias tolerantes a presenca de elementos potencialmente toxicos, como
Rhodoplanes, Kaistobacter, Sphingomonas e Flavisolibacter também foram identificadas nas
amostras analisadas. A Tabela 1 relaciona alguns autores, 0os microorganismos detectados por
eles e o0s elementos potencialmente toxicos presentes em altas concentracbes na area

investigada.
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Tabela 1 - Listagem de autores que correlacionaram os elementos potencialmente téxicos com

diferentes microorganismos.

Autor Microorganismos Elementos  Potencialmente
ToOXicos
Haller et al. (2011) Deschloromonas Cu, Zn, Cd, Pb, Cr, mercurio
(Hg)
Altimira et al. (2012) Sphingomonas Cu
Anaeromyxobacter sp, | As
Kudo et al. (2013) Sedimentibacter sp., Geobacter
sp.
Devosia, Fusobacteria, | As, Cu, Pb, Zn
Reis et al. (2013) Spirochaetes, Armatimonadete,
Chloroflexi
Pereira, Vicentini e Ottoboni | Meiothermus, Sphingomonas, | Cu
(2015) Rhodoplanes, Bradyrhizobium,

Flavisolibacter
Kaistobacter sp., Rhodoplanes, | Pb, Zn
Sphingomonas sp., Mycoplana
sp., Mycobacterium, Bacillus,
Solibacillus, Bradyrhizobium
Touceda-Gonzalez et al. (2015) | SP-, Burkholderia sp.,
Variovorax sp., Achromobacter,
Acinetobacter sp., Erwinia sp.,
Staphylococcus sp., Aerococcus
sp., Streptococcus sp.,
Deinococcus, Nitrososphaera
Kasemodel et al. (2019) Proteobacteria, Bacteroidetes | Pb, Zn, Cd
Acidobacteria, Rhodoplanes,
Kaistobacter,  Sphingomonas
Flavisolibacter

Fonte: Adaptado de Kasemodel et al. (2017)

Song et al. (2018), ao fazerem um experimento a longo e curto prazo, observaram que
ndo houve diferenca nos intervalos de concentracdo de elementos potencialmente toxicos, além
de diminuicdo da biomassa microbiana com o aumento das concentracdes de Cu, Cd e Zn no
solo. Além disso, observaram que a interacdo entre os fatores fisico-quimicos do solo com o0s
elementos potencialmente toxicos desempenharam um importante papel na mudanca da
comunidade bacteriana. O mesmo foi descrito por Sun et al. (2020), que compararam a
atividade microbiana na presenca de As e antiménio (Sb). Em geral, os impactos nas
comunidades microbianas foram maiores na presenca de As, embora a microbiota local para
ambos 0s contaminantes, se mostraram adaptaveis mesmo em ambientes altamente
contaminados.

E importante ressaltar que os exemplos citados anteriormente dependem das condicdes

do local, dos contaminantes encontrados, da interagdo entre o solo com os elementos
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potencialmente toxicos, da populacdo nativa de microbiota que ja reside no ambiente e da
resposta da microbiota a exposicdo a estes elementos toxicos. Todo esse processo é complexo
e deve ser aprofundado em estudos futuros para melhor entendimento dos microorganismos
mais encontrados em cada situacdo, e como eles sdo importantes bioindicadores quando se fala

em atividades antropogénicas.

5. MATERIAIS E METODOS

Esta pesquisa caracteriza-se como descritiva, retrospectiva e de revisdo bibliografica
descritiva, tendo como objeto os estudos publicados sobre microorganismos como
bioindicadores de locais contaminados por elementos potencialmente toxicos relacionados com
a mineracdo. Estes estudos foram pesquisados em periddicos nacionais e internacionais e
revistas de alto impacto como Chemosphere, Science of the Total, Environmental Research,
Journal of Harzadous Materials, entre outros.

As bases de dados Scopus, Web of Science, Science Direct e Scielo foram utilizadas
com o objetivo de refinamento dos trabalhos que foram pesquisados primeiramente de forma
mais geral no Google Académico. Os critérios incluiram também trabalhos de Dissertacdo/Tese
e livros abordando o tema pesquisado. Foram priorizados trabalhos publicados no periodo de
2010 a 2021. Para coleta de dados foram definidas as seguintes palavras-chave:
“microorganismos”, “area de minerag¢ao”, “Pb, Zn, Cd, As”, entre outras que surgiram ao longo
da pesquisa. Foi levado em consideracdo também o titulo, fonte e autores do trabalho, o ano de
publicacdo, tipo de delineamento da pesquisa, caracterizacdo dos resultados, ambiente de
estudo, a metodologia empregada e os contaminantes utilizados em cada pesquisa. Além disso,
combinac@es entre as palavras-chave também foram usadas conforme a necessidade. De mais
de 150 artigos encontrados, apés leitura e aprofundamento no tema, foram escolhidos em torno
de 47 artigos para serem utilizados como base na escrita deste trabalho. Abaixo na Figura 1, um

fluxograma explicativo de como foi feita a revisdo bibliografica:
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Figura 1 — Fluxograma com as seis etapas na elaboracao da revisdo bibliogréafica tradicional.

" 1. Definir o subtema com o qual se tem
| mais afimdade dentro do tema escolhido;

[ 2. Definir as questdes ¢ hipotese de pesquisa,
— identificando se ha a necessidade de fazer a revisdo:

|

4. Definir a forma de reviso que sera realizada (tradicional ou 3. Os objetivos sdo definidos ¢ eatdo, uma justificativa
sistemitica). No caso desse trabalho. a revisio foi tradicional: _ para a realizacio da revisdo serd delineada:
-~ J \

l

g b
5. Definir como serd feito a busca, quais as palavras-
chaves utilizadas e em quais bases de dados procurar;

{

6. Aprimorar as buscas, combinando diferentes palavras-
— chave e selecionar quais artigos serdo utilizados.

\

J
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6. RESULTADOS E DISCUSSAO

6.1. Microrganismos no solo

O solo é um recurso natural essencial formado por fatores ecoldgicos, biologicos,
quimicos e fisicos. Ele € considerado um habitat naturalmente diversificado, com comunidades
biologicas complexas, onde pode-se encontrar diferentes formas de microorganismos, que
interagem de inimeras formas, tendo como objetivo manter o equilibrio dindmico no ambiente
(Carrer Filho, 2002; Melo et al., 2017).

Por sua vez, 0s microorganismos sdo organismos de tamanho muito pequeno que podem
ser observados apenas com o auxilio de microscopio. Muitas vezes no solo, eles constituem
populacbes muito numerosas, com bilhGes de individuos, o que possibilita visualizar essas
coloénias a olho nu. Os microorganismos possuem papel extremamente importante na
transformacéo e decomposi¢cdo da matéria organica, no fluxo de energia do solo e na ciclagem
de nutrientes. Sdo exemplos de microorganismos as bactérias, leveduras, fungos, protozoarios,
algas e actinomicetos (De Nobili et al., 2001).

As comunidades microbianas no solo podem apresentar diferentes estagios fisiol6gicos.
Os trés primeiros sdo considerados vivos: o estado ativo, potencialmente ativo e o estado
dormente. No estado ativo os microorganismos estdo envolvidos na utilizacdo continua de
substratos e estdo associados a transformacgdes bioquimicas. Quando o microorganismo se
encontra potencialmente ativo, ele pode ser considerado continuamente em estagio de alerta
fisioldgico e pode mudar para utilizacdo de substratos dentro de minutos e até algumas horas,
dependendo da situacdo em que o solo é submetido. O mesmo pode ser caracterizado para
microorganismos em estado dormente, em que ele apenas contribui para 0S processos
bioquimicos quando algumas propriedades do solo sdo alteradas. J& o Gltimo estado que é de
microorganismos mortos no solo, podem incluir células lisadas e residuos microbianos. E
importante ressaltar que estes microoganismos mortos nao contribuem para a maioria dos
processos no solo. No entanto, as metodologias utilizadas na quantificacdo de microorganismos
quantificam também os que estdo em estagio de morte. Dessa forma, &€ importante conhecer o
solo avaliado, as alteracOes observadas nele e principalmente relacionar 0s processos
prioritariamente aos microorganismos descritos nos trés primeiros estagios (Johnsen et al.,
2001.; De Nobili et al., 2001.; Rousk et al., 2009.; Raubuch et al., 2010.; Blagodatskaya, Yakov
Kuzyakov., 2013).
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Segundo Kabata-Pendias (2011) a abundéncia dos microorganismos podem chegar em
até 20% do total da biota no solo. Esta porcentagem pode variar com relacéo as caracteristicas
naturais e condicGes climaticas do solo. Além disso, 0s microorganismos podem ocupar até
0,5% do espaco poroso do solo, aumentando sua ocupacdo apenas no solo rizosférico, como
consequéncia de maior disponibilidade de substrato (Moreira e Siqueira, 2006).

Quando se fala em alteragéo no solo e consequentemente em mudancas na comunidade
de microorganismos residentes no ambiente, pode-se citar a contaminacao desses solos com
substancias organicas e inorganicas, fruto de atividades antropogénicas. Para substancias
organicas, o primeiro estudo registrado sobre a acdo dos microoganismos em locais
contaminados foi com Pseudomonus putida em 1974 (Prescott et al. 2002). A degradacao dos
poluentes organicos por microorganismos ocorre na presenca de oxigénio pela respiracdo ou
sob condicdes andxicas por desnitrificacdo, sulfidogénese e metanogénese (Chatterjee et al.,
2008).

Exemplos de trabalhos publicados relacionando microorganismos com diferentes

substancias organicas no solo pode ser observado na Tabela 2.
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Tabela 2 - Trabalhos publicados com os respectivos poluentes e organismos encontrados.

Poluentes Organismos Referéncias
Benzeno, antraceno, Pseudomonas spp Kapley et al. (1999) e
hidrocarbonetos e PCBs Cybulski et al. (2003)
Hidrocarbonetos Alcaligenes spp Lal and Khanna (1996)

halogenados, aromaticos
policiclicos, PCBs
Benzeno, hidrocarbonetos, Arthrobacter spp Jogdand (1995)
pentaclorofenol, e
aromaticos policiclicos

Aromaticos, alcanos de Bacillus spp Cybulski et al. (2003)
cadeia longa, fenol, cresol

Hidrocarbonetos Corynebacterium spp Jogdand (1995)
halogenados

Aromaticos Flavobacterium spp Jogdand (1995)
Aromaéticos Azotobacter spp Jogdand (1995)
Naftaleno e bifenil Rhodococcus spp Dean-Ross et al. (2002)
Aromaticos, Mycobacterium spp Sunggyu (1995)

hidrocarbonetos de
benzeno ramificados

Hidrocarbonetos Nocardia spp Park et al. (1998)
Aromaticos Methosinus sp Jogdand (1995)
Aromaticos Methanogens Jogdand (1995)
Hidrocarbonetos Xanthomonas spp Jogdand (1995) e ljah
policiclicos (1998)
Fenoxiacetato, Streptomyces spp Jogdand (1995)
hidrocarboneto halogenado

PCBs, formaldeido Candida tropicalis ljah (1998)
PCBs, aromaticos Cunniughamela elegans Jogdand (1995)
policiclicos

PCBs P. chrysosporium Borazjani et al. (2005)

Fonte: Adaptado de (Chatterjee et al., 2008)
A contaminacdo no solo por substancias inorganicas ocorre preferencialmente quando

as concentracOes de elementos potencialmente toxicos excede a concentragdo normalmente

encontrada no solo (Tabela 3).
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Tabela 3 - Elementos potencialmente toxicos e suas respectivas concentragdes normais e limites

de concentragdes aceitaveis no solo.

Elemento Concentrag&o normal no solo Limite de concentragéo
(mg/kg) aceitavel (mg/kg)
Chumbo (Pb) 0,1-20 100
Cédmio (Cd) 0,1-1 3
Cromo (Cr) 10-50 100
Cobre (Cu) 5-20 50
Niquel (Ni) 10-50 50
Mercurio (HQ) 0,1-1 2
Zinco (Zn) 10-50 300
Boro (B) 5-30 25
Cobalto (Co) 1-10 50
Molibdénio (Mo) 1-5 5
Selénio (Se) 0,1-5 3
Arsénio (As) 2-20 20
Titanio (Ti) - 500
Vanadio (V) 10-100 50
Uranio (U) - 5

Fonte: Adaptado de Khan et al. (2011).

O Pb, um dos metais mais resistentes, possui uma retencdo no solo entre 150 e 5000
anos. Um estudo de 1995 (NandaKumar et al., 1995) reportou que mesmo apds 150 anos de
aplicacdo de Pb no solo, as concentracfes deste metal se mantiveram muito altas. O Cd, por sua
vez, possui meia-vida bioldgica de 18 anos (Forstner, 1995). Quando em altas concentragdes,
o0s ions metalicos podem inibir completamente a populacdo microbiana, inibindo a maioria de
suas atividades metabolicas, como desnaturacdo de proteinas, inibicdo da divisdo celular,
ruptura da membrana celular, entre outros (Shukla et al. 2010). A toxicidade de metais em
microorganismos ocorre por meio do deslocamento de elementos essenciais de seus locais de
ligacdo nativos ou por meio de interacdes de ligantes (Nies, 1999; Bruins et al., 2000).

Os microorganismos desenvolveram seis fatores de homeostase de ions metalicos e

determinantes que auxiliam na resisténcia do metal: exclusdo por barreira de permeabilidade;
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sequestro intra e extracelular; bombas de efluxo ativo; reducdo enzimaética; e reducdo na
sensibilidade de alvos celulares a ions metalicos (Ji e Silver, 1995; Nies e Silver, 1995; Nies,
1999; Rensing et al., 1999; Bruins et al., 2000). Esses mecanismos funcionando de forma
conjunta ou separada, permite que 0s microorganismos se estabelecam em locais contaminados
por elementos potencialmente toxicos. A transformacdo microbiana pode ocorrer de duas
formas para se adaptar ao ambiente estressante: conversdes da forma inorganica para a forma
organica e vice-versa, tipicamente metilacdo e desmetilacdo e conversdes redox de formas
inorgénicas. A Tabela 4 exibe os grupos de microorganismos que conseguem sobreviver em

locais contaminados com seus respectivos elementos potencialmente toxicos.

Tabela 4 - Grupos de microorganismos relacionados aos elementos potencialmente toxicos.

Elemento Microorganismos

Cu Bacillus sp., Pseudomonas aeruginosa, Chlorella vulgaris, Pleurotus ostreatus,

Phormidium valderium, Volvariella volvacea, Daedalea quercina

Ni Pseudomonas aeruginosa, Zooglea sp., Chlorella vulgaris, Phormidium valderium

Zn Bacillus sp., Chlorella vulgaris, Aspergillus niger, Pleurotus ostreatus, Daedalea
guercina

U Pseudomonas aeruginosa, Citrobacter sp., Chlorella vulgaris, Aspergillus niger

Co Zooglea sp., Phormidium valderium

Cd Ganoderma applantus, Zooglea sp., Citrobacter sp., Aspergillus niger, Pleurotus

ostreatus, Stereum hirsutum, Phormidium valderium

Pb Stereum hirsutum, Citrobacter sp., Chlorella vulgaris, Ganoderma applantus,

Volvariella volvacea, Daedalea quercina

Hg Chlorella vulgaris, Rhizopus arrhizus, Volvariella volvacea, G. metallireducens
Au (Ouro) Chlorella vulgaris, G. metallireducens

Ag (Prata) Aspergillus niger,, Rhizopus arrhizus, G. metallireducens

Cr D. vulgaris, D. Acetoxidans, D. Fructosovorans, D. norvegicium

Fonte: Adaptado de Chatterjee et al. (2008)

Dentre os parametros do solo que estdo relacionados ao comportamento dos elementos
potencialmente téxicos e ao comportamento dos microorganismos, pode-se citar o pH,
potencial redox (Eh), CTC, a textura do solo, temperatura e umidade. De acordo com Vidali
(2001), embora os microorganismos apresentem capacidade de crescer em ambientes extremos,

a maioria deles cresce em uma estreita faixa de cada pardmetro, alcan¢ando assim as condic¢des
24



ideais. A temperatura pode afetar as taxas de reagGes bioquimicas, e dependendo do
microorganismo as suas células podem até morrer. A agua disponivel também é essencial para
manter a umidade, fazendo com que a irrigacao constante seja necessaria. Abaixo, algumas das

condicdes ideais para um bom desempenho da atividade dos microorganismos no solo.

Tabela 5 - Relacdo entre alguns fatores ambientais e suas respectivas condigdes 6timas.

Fatores Ambientais Condicées Otimas

pH 55-8,8

Temperatura 159 - 45°

Umidade 25 — 28% da capacidade de retencdo de agua

Tipo de solo Baixo teor de argila ou silte

Oxigénio Aerobio, espaco minimo de poros preenchido com 10% de ar
Nutriente Nitrogénio (N) e Fésforo (P) para crescimento microbiano
Elementos Concentracao total até 2000 mg/kg

potencialmente

tOXicos

Contaminantes N&o tdo tdxico, em baixas concentragdes

Fonte: Adaptado de Vidali (2001)

De acordo com Alloway (1995), o pH é a propriedade que interfere de forma mais
intensa na disponibilidade dos elementos potencialmente toxicos, pois ele afeta a capacidade
de complexacdo dos elementos em agua determinando se o elemento esta precipitado ou
dissolvido. Na maioria dos casos, a retencdo dos elementos potencialmente tdxicos no solo
aumenta juntamente com o aumento de pH. As excec6es sdo 0 molibdénio (Mo), selénio (Se),
As e alguns estados de valéncia do Cr que geralmente sdo mais moveis em condices alcalinas.

Como todos os parametros do solo podem estar interligados, o Eh interfere na valéncia
dos elementos e também no pH do solo. Em resumo, quando ocorrem condigdes redutoras no
solo, queda no nivel de oxigénio e de ions H* livres, tém-se diminuicdo do potencial redox,
aumentando assim o pH. Isso pode contribuir para maior reducdo da disponibilidade dos
elementos potencialmente tdxicos, originando simultaneamente formas menos sollveis desses
elementos (Alloway, 1995).

A CTC do solo pode ser definida como a densidade de cargas negativas nas superficies
de suas fracdes coloidais e a carga de espécies metalicas em solucéo e na superficie do solo. De

acordo com essas caracteristicas, pode ocorrer variagdo na capacidade do solo de adsorver
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cations (Alloway, 1995). Adriano (1986) destacou que a CTC do solo depende da quantidade e
tipo de argila, matéria organica e presenca de 6xidos de Fe (Ferro), Mn e Al (Aluminio).

A capacidade de armazenamento de matéria organica do solo depende do clima, tipo de
solo e paisagem, tipo de vegetacdo e manejo do solo. A influéncia do clima no armazenamento
de matéria organica do solo pode ser expressa pela relacdo entre a temperatura média anual e a
precipitagdo anual (Carter, 2020). A matéria organica, alem de atuar na CTC, pode fornecer
produtos quimicos organicos a solucdo do solo que podem servir como quelatos e aumentar a
disponibilidade de elementos potencialmente toxicos para as plantas (McCauley et al., 2009).
Foi relatado que a adsorcdo destes elementos nos constituintes do solo diminuiu com a
diminuicdo do teor de matéria organica nos solos (Hettiarachchi et al., 2003; Antoniadis et al.,
2008). Além disso, a matéria organica dissolvida nos solos pode aumentar a mobilidade e
absorcédo de elementos potencialmente toxicos para raizes de plantas (Impellitteri et al., 2002;
Du Laing et al., 2009). Dai et al. (2004) estimaram que as concentracdes de Cd, Pb e Zn em
solos contaminados estavam positivamente correlacionados com os teores de matéria organica
nos solos.

A textura do solo depende inteiramente de fracdes de argila, silte e areia. A alta afinidade
dos elementos potencialmente toxicos com a argila é devido a facilidade de adsorcdo nessa
fracdo, apresentando a seguinte ordem: argila > silte > areia (Rieuwerts et al., 1998). De acordo
com Farrah e Pickering (1977), a adsor¢cdo em argilas ocorre pela adsorcdo de ions hidroxila
seguido da ligacdo entre o ion metalico na argila, que pode ser pela ligacdo no grupo hidroxila
adsorvido ou no sitio criado pela remocao de préton.

Trabalhos recentes como o de Guo et al. (2021), estudaram profundamente as areas de
mineracdo de minérios ndo ferrosos e sua relacdo com a mobilidade de contaminantes como
Cd, Pb e As e as comunidades microbianas presentes no local. O artigo correlacionou todos
esses aspectos com as propriedades do solo, relacionando a mobilidade dos poluentes de acordo
com o valor de Eh, teor de argila, CTC e a concentracdo de cada um dos elementos investigados.
Além disso, encontraram trés filos predominantes na area (Proteobacteria, Acidobacteria e
Firmicutes) que estavam intimamente relacionados com o pH do solo, a CTC, Eh, matéria
organica disponivel e a biodisponibilidade de cada um dos poluentes toxicos.

Estudos anteriores citam a presenca de microorganismos no solo como resistentes a
presenca de elementos potencialmente toxicos, sendo que estes se adaptam as condi¢fes nesses
locais contaminados (Li et al., 2017). Dessa forma, comunidades microbianas que ja habitam

em locais de mineracdo estdo comecando a serem descritas e estudadas como potenciais
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biorremediadoras desses ambientes contaminados no futuro. Outros pontos positivos da
biorremediacdo pela microbiota local podem ser citados: possuem baixo custo e pouca
intervencdao ecoldgica com chance muito baixa de modificar o ambiente local (Dixit et al., 2015;
Xu et al., 2020).

6.2. Elementos potencialmente toxicos e microorganismos

Inimeros trabalhos tém descrito de forma organizada a relacdo que ocorréncias de
microorganismos no solo tem com os elementos potencialmente toxicos. Os elementos
potencialmente toxicos mais relatados sdo Pb, Cd, Zn e Cu. Haller et al. (2011) realizaram um
estudo no Lago de Genebra na Suica e comparam a composicéo de comunidades bacterianas e
de arqueas em dois grupos de sedimentos: 0s sedimentos ndo contaminados e os sedimentos
contaminados com Cu, Zn, Cd, Cr, Pb e Hg. Os autores encontraram pela analise filogenética
que a grande proporc¢éo de bactérias estava relacionada ao grupo de Dechloromonas sp.

O Cu também foi encontrado ligado a ocorréncia do grupo de microorganismos da
Sphingomonas. Em um estudo publicado em 2012 realizado no Chile, a eletroforese em gel de
gradiente desnaturante de genes 16s de RNA ribossémico foi utilizada para caracterizar os
grupos de bactérias ligadas a sites contaminados com Cu. Além de Sphingomonas, foram
encontrados os géneros de Stenotrophomonas e Arthrobacter (Altimira et al., 2012).

Ja 0 As, que € um metaloide, foi descrito no trabalho de Kudo et al. (2013). Os autores
utilizaram uma bactéria redutora de arsenato, designada de cepa PSR-1, e a isolaram de solo
contaminado com As. Estes autores concluiram que esta cepa esta intimamente relacionada com
Anaeromyxobacter sp., Sedimentibacter sp. e Geobacter sp. Um estudo feito em éareas de
mineracdo com presenca de As em grandes concentragdes sugeriu que membros do grupo
Alphaproteobacteria sdo potenciais indicadores biol6gicos de sedimentos contaminados com
este metaloide (Reis et al. 2013).

Como descrito anteriormente, a metilagdo microbiana desempenha um papel importante
no ciclo biogeoquimico dos elementos, porque os compostos metilados sdo frequentemente
volateis. Um exemplo disso, € o0 Hg que pode ser biometilado por diferentes espécies
microbianas (Pseudomonas sp., Escherichia sp., Bacillus sp. e Clostridium sp) para
metilmercdrio gasoso, que é a forma mais toxica do mercudrio (Pan-Hou e Imura 1982; Compeau
e Bartha 1985; Pongratz e Heumann 1999). O mesmo pode ser observado para a biometilagdo
de As em arsinas gasosas (Gao e Burau 1997) e Se em dimetil seleneto volatil (Flury etal. 1997;
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Guo et al. 1999; Martens e Suarez 1999; Zhang e Frankenberger 1999; Dungan e Frankenberger
2000).

Em um ambiente contaminado com rejeitos de mineragcdo 0s microorganismos podem
acelerar a dissolucao oxidativa do sulfeto mineral, levando a formacéo de drenagens acidas de
minas (DAM). Por outro lado, os microrganismos podem favorecer a precipitacéo de elementos
potencialmente toxicos em solucdo, contribuindo para a atenuagdo natural de aguas poluidas.
Especificamente na Africa do Sul, para o processo de biorremediacio em drenagem &cida de
mina foram correlacionadas bactérias dos géneros Desulfovibrio e Geobacter (Van Hille et al.,
2016).

Um estudo realizado na China indicou que bactérias do solo podem cooperar entre si
para se adaptar a perda de nutrientes no habitat desfavordvel causada pela atividade de
mineracdo. No entanto, o estudo indicou o enfraquecimento da resisténcia das comunidades
bacterianas a mudancas externas causadas pela contaminagdo (Luo et al., 2020). Além disso,
foi relatado que as comunidades de bactérias podem mudar de acordo com a localizagdo
geografica, condi¢bes meteoroldgicas, estacOes, intensidade da atividade de mineracéo,
temperatura, entre outros fatores. Habekost et al. (2008) fizeram uma pesquisa na Alemanha
com o objetivo de comparar comunidades microbianas ao longo das quatro estaces. Foram
encontradas variacGes sazonais juntamente com as comunidades, devido as diferentes
disponibilidades e qualidade de recursos organicos ao longo de um ano. A ocorréncia de
nutrientes também pode ser um fator limitante para o desenvolvimento de microorganismos
(Hicks et al., 2021).

Quando a exploracédo do ouro (Au) ocorre, 0 solo ao redor do rejeito pode se contaminar
com As. Li et al. (2021) exploraram o comportamento do As nesse caso e as modificagfes na
microbiota local. Foi encontrado genes de reducdo de As como 0s mais abundantes, seguidos
pelos genes de oxidacdo de As, em seguida, genes de respiracdo e por Ultimo genes de
metilagdo. Os genes do metabolismo de As, arsBCR, aioE, arsPH, arrAB aumentaram com o
maior concentragcdo do metaloide. Alem disso, Actinobacteria, Proteobacteria, Acidobacteria
e Chloroflexi foram os microorganismos dominantes e relacionados ao metabolismo do As.

Foi demonstrado também que o tipo de uso do solo pode impactar diretamente na
microbiota local. Como exemplo, Xiao et al. (2021) caracterizaram as comunidades
microbianas em trés usos do solo, em uma area de mineracéo: floresta, grama e solo agricola.
Acidobacteria foi mais encontrada em solos agricolas e gramas, enquanto o filo de maior

abundancia na floresta foi Proteobacteria. Esses dois filos foram reportados também
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anteriormente em solos impactos por mineracdo, de uso agricola (Zhang et al., 2020), solos de
floresta (Shi et al., 2015) e solos de rejeito (Xiao et al., 2019).

Para Pb e Cd demonstrou-se que na China, as altas concentracdes destes elementos tém
impacto significativo na atividade microbiana e enzimatica do solo. Conforme foi adicionado
Pb e 0 Cd, as atividades enzimaticas e da microbiota local diminuiram significativamente (Xiao
etal., 2020). Por outro lado, Li et al. (2020) relataram aumento na atividade de microorganismos
na presenca de Pb e Zn. A anélise da microbiota relacionada a profundidade indicou alta riqueza
de microrganismos e diferencas significativas na estrutura microbiana vertical. Proteobacteria
foi o filo dominante em todas as camadas profundas, seguido por Firmicutes, Actinobacteria,
Bacteroidetes e Acidobacteria como principais filos. Além disso, o pH e a presenca de outros
elementos potencialmente téxicos (em menores concentra¢bes) como Cu, As, Mn e Cd
influenciaram significativamente na composicdo da microbiota. Dessa forma, dependendo de
inimeras variaveis do local, a comunidade microbiana pode responder de forma positiva ou
negativa a contaminacao.

Dentre os elementos potencialmente téxicos, o Cr pode ocorrer em duas formas
diferentes: Cré* e Cr¥*. O Cr®" hexavalente sollvel em agua apresenta maiores ameagas ao
ambiente do que o Cr3*, que por sua vez é considerado benigno e prontamente precipitado em
pH ambiental. Foi demonstrado também que o uso sucessivo de microorganismos é a melhor
estratégia para inibir com o Cr® do meio ambiente (Elahi et al., 2020). Os microorganismos
relacionados a essa reducdo do Cr® sdo: Bacillus, Deinococcus, Agrobacterium, Thermus,
Pseudomonas, Shewanella, Enterobacter, Staphylococcus, Escherichia, entre outros (Ohtake et
al. 1987).

Além do estresse causado por elementos potencialmente toxicos, ainda é possivel que
diferentes tipos de estresse ocorram de forma combinada ou separada em um mesmo local,
deixando a compreensdo dos grupos de microorganismos encontrados um pouco mais
complexa. E preciso estudar a fundo cada tipo de estresse e principalmente entender como
relacionar cada um deles com a microbiota que possivelmente serd encontrada. Wang et al.
(2019) estudaram as respostas das comunidades microbianas do solo e suas interagdes com o
estresse salino-alcalino e o estresse da contaminacdo causada por Cd. O aumento da salinidade
e alcalinidade do solo aumentaram a disponibilidade do Cd. A adi¢&o de sais neutros e alcalinos
aumentou a concentracdo de comunidades bacterianas das familias Sphingobacteriaceae,
Cellvibrionaceae e Caulobacteraceae, mas diminuiu algumas Acidobactérias, que respondiam

melhor apenas quando o estresse era apenas por Cd.
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As técnicas mediadas por microrganismos geneticamente modificados (GEMs) para a
remo¢do de metais e metaloides sdo consideradas uma estratégia ambientalmente segura e
economicamente viavel. Varias formas de GEMs, incluindo fungos, algas e bactérias, foram
produzidas por tecnologias de DNA e RNA recombinantes, usadas para eliminar compostos de
metal e metaloides das &reas contaminadas. Além disso, as GEMs tém potencial para produzir
enzimas e outros metabdlitos capazes de tolerar o estresse dos metais e desintoxicar 0s
poluentes. Sharma et al. (2021) fizeram uma revisdo detalhada sobre este tema. A
biorremediacdo depende da interacdo dos microorganismos com os elementos potencialmente
toxicos.

Microorganismos geneticamente modificados é basicamente uma microbiota que teve
seu codigo genético modificado por meio de técnicas da Engenharia Genética, e de
transferéncias de genes evolutivos de um microorganismo para outro. Essa abordagem é
conhecida atualmente como técnica de DNA recombinante (Janssen e Stucki, 2020). Segundo
Ryan et al. (2000), o primeiro teste feito com microorganismos geneticamente modificados foi
em 1996 para fins de biorremediacdo. O processo passou pela aprovacdo da Agéncia de
Protecdo Ambiental dos Estados Unidos (EPA). De acordo com a revisao, pode-se perceber que
este tema é mais atual e esta sendo muito explorado atualmente. Na Tabela 6 observa-se que a
maioria dos trabalhos sobre esse tema sdo de 10 anos atras (até o ano de 2021).
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Tabela 6 - Microbiota geneticamente modificada, microorganismos correspondentes e

respectivas referéncias.

Microorganismos

Microbiota geneticamente modificada

Referéncias

E. coli

E. coli IM10

Jin et al. (2009)

Pseudomonas putida

Pseudomonas putida

Zhu et al. (2020)

Sphingomonas

Sphingomonas desiccabilis

Chen et al. (2013)

Stenotrophomonas sp.

Stenotrophomonas sp YC1

Liu et al. (2014)

Pseudomonas sp.

Pseudomonas sp. BF1-3

Barman et al. (2014)

Bacillus subtilis

Bacillus subtilis 168 YCMarsM

Huang et al. (2015)

Pseudomonas fluorescens

Pseudomonas fluorescens HK44

Trogl et al. (2012)

Rhodococcus sp.

Rhodococcus sp.

Jaiswal et al. (2019)

Ralstonia eutropha

Ralstonia eutropha CH34

Singh et al. (2011)

Achromobacter

Achromobacter sp. AO22

Ng et al. (2012)

Mesorhizobium huakuii

Mesorhizobium huakuii sub sp. Rengei B3

Singh et al. (2011)

Pseudomonas putida

Pseudomonas putida KT2440 Graf

Graf, Altenbuchner,
(2014)

Sphingomonas

Sphingomonas desiccabilis

Chen et al. (2013)

Saccharomyces cerevisiae

Saccharomyces cerevisiae MLO1

Vaudano et al. (2016)

Aspergillus niger

Aspergillus niger phyA2

Zhou et al. (2015)

Aspergillus niger

Aspergillus niger xInR

Jiang et al. (2016)

Trichoderma reesei

Trichoderma reesei Xyrl

Jiang et al. (2016)

Aspergillus oryzae

Aspergillus oryzae LDH 871

Wakai et al. (2014)

Aspergillus nidulans

Aspergillus nidulans gaaR

Alazi et al. (2018)

Pycnoporus sanguineus

Pycnoporus sanguineus MUCL 41582

Knop et al. (2015)

Pseudochoricystis ellipsoidea

Pseudochoricystis ellipsoidea PUT2

Kasai et al. (2015)

Nannochloropsis salina

Nannochloropsis salina NsbHLH2

Kang et al. (2015)

Pseudochoricystis ellipsoide

Pseudochoricystis ellipsoide G418

Imamura et al. (2012)

Nannochloropsis salina

Nannochloropsis salina AtWRI1

Kang et al. (2017)

Chlorella ellipsoidea

Chlorella ellipsoidea GmDof4

Zhang et al. (2014)

Chlamydomonas reinhardtii

Chlamydomonas reinhardtii

Zedler et al. (2016)

Fonte: Sharma et al. (2021)
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Além da lista apresentada na Tabela 6, pode-se citar também combinaces de
microorganismos geneticamente modificados que ja foram relatados na literatura e que
auxiliaram na degradacao de elementos potencialmente toxicos:

- Mesorhizobium huakuii (microorganismo geneticamente modificado) com expressao génica
para transformar genes em fitoquelatinas. Nesse caso, ocorreu 0 acimulo e degradacéo de Cd
(Porter et al., 2017);

- Ralstonia eutropha AUM-01, rizobactéria recombinante capaz de remover metais (Cha e
Chambliss., 2011);

- Pseudomonas putida X3 strain, que constitui uma incorporacdo aprimorada de proteina
fluorescente verde e gene que degrada metil parathion e que consegue degradar o Cd (Zhang et
al., 2016);

- Shewanella putrefaciens que auxilia na expressao de genes arrA. Esse padrdo de expressao
consegue realizar a desintoxicacao de As (Shi et al., 2020);

- Acidithiobacillus ferrooxidans que contém gene transportador de ion mercdrio (mer C). Esse
gene auxilia na degradacdo de Hg (Ouyang et al., 2013);

- E.coli SE5000 strain que contém a expressao do sistema de transporte de Ni (gene nixA) e
consegue degradar o Ni (Farnham and Dube, 2015);

- Mycobacterium, que expressa 0 gene propano monooxigenase (prmA) e consegue detoxificar

poluentes em geral (Miao et al., 2020).

6.3. Indices de diversidade microbiana

Segundo @vreds (2000), a caracterizacdo da diversidade microbiana nos solos é
importante para aumentar o conhecimento das fontes de diversidade genética em uma
comunidade; entender os padrdes de distribuicdo relativa dos microrganismos; aumentar o
conhecimento do papel funcional dessa diversidade; identificar diferencas em diversidade
associadas a disturbios causados por praticas de manejo; entender a regulacéo da biodiversidade
e o0 envolvimento da biodiversidade no funcionamento e na sustentabilidade de ecossistemas.

A diversidade microbiana nos solos ¢ essencial tanto para a defini¢do de estratégias para
preservacdo de biomassa quanto para o desenvolvimento de sistemas indicadores de alteragdes
ambientais associadas a distUrbios, como a presenca de poluentes ou a utilizagao néo sustentavel
de solos agricolas. Além disso, o conhecimento dos recursos genéticos da microbiota dos solos

pode contribuir para a descoberta de genes codificando novas enzimas, enzimas com atividade
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Otima em condicbes ambientais extremas e peptideos com atividades de interesse
biotecnoldgico (@vreas, 2000). Portanto, é essencial entender que a diversidade pode modificar
de acordo com a quantidade de metais potencialmente tdxicos no solo.

Abaixo, tem-se um resumo dos principais indices de diversidade e sua descricdo. A
Riqueza (R), é considerada a mais simples para representacéo da diversidade (Whittaker, 1972).
O indice mais simples relacionado & abundéncia proporcional foi proposto por Berger e Parker
(1970), chamado de Dominancia de Berger-Parker (BP).
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Tabela 7 - indices de diversidade microbiana, a equacio utilizada e uma breve descrigao.

Indice

Equacéo

Descricéo

Riqueza (S ou Chao 1)

NUmero de espécies

Indica 0 nimero de espécies na
populagéo.

Diversidade de Shannon (H’)

—lnz Pn(P;)

Entropia da amostra. Para
indice de Shannon proximo de
zero, a amostra tem abundancia
concentrada em apenas uma
espécie e as demais espécies sdo
muito raras.

Diversidade de Simpson (D1)

Probabilidade que duas
espécies randémicas
representem tipos diferentes;
também  conhecido  como
probabilidade de encontro
interespecifico (PIE).

Dominancia de Simpson (D)

Probabilidade que duas
entradas randémicas tém de
fazerem parte da mesma
espécie. Varia de zero a 1,
sendo que valores proximos de
1 indicam baixa dominancia e
valores proximos de zero
indicam elevada dominéancia.

Dominancia de Berger-Parker
(BP)

Prmax

Abundéncia proporcional da
espécie  mais  abundante.
Portanto, para valores proximos
de zero a abundancia
proporcional da espécie mais
abundante é baixa, ou seja, a
amostra é diversa.

Evenness ou Equitatividade de

Simpson

Uniformidade da amostra de
interesse  em  relacdo  a
abundéancia  de  diferentes
espécies. Caso nao haja tipos
altamente dominantes 0
Evenness ser4 maior (proximo
de um), caso contrario, ou seja,
muitos tipos dominantes o
Evenness serd proximo de zero.

Fonte: Adaptado de Kasemodel (2017); Shannon (1948); Simpson (1949); Berger e Parker

(1970)
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6.4. Técnicas para determinar a comunidade microbiana no solo

De acordo com Kandeler (2007), antes de iniciar qualquer analise microbioldgica no
solo é importante fazer o delineamento experimental e planejar a estratégia de amostragem
adequados para cada caso. Existem métodos bioquimicos e fisiologicos para analisar a
comunidade microbiana no solo. Os métodos bioquimicos sdo usados para determinar a
distribuicéo e a diversidade dos microrganismos do solo, enquanto os metodos fisiologicos nos
auxiliam a entender a fisiologia das células individuais, a atividade das comunidades
microbianas do solo e o ciclo biogeoquimico do ecossistema.

O primeiro passo é a amostragem, que deve ser representativa da avaliagdo-alvo. Por
isso, recomenda-se coletar o maior nimero de amostras possiveis e fazer amostras compostas,
representando todo o espaco a ser estudado (Moreira e Siqueira, 2006). De maneira geral, a
amostragem do solo pode ser dividida da seguinte forma: para avaliar ocorréncia, densidade e
diversidade, utiliza-se avaliacdo direta, semi-direta e indireta. Para avaliar o processo e
atividade outros métodos sdo utilizados que serdo descritos posteriormente.

Nas avaliacOes diretas pretende-se observar 0s organismos como ocorrem em seu
habitat, e avalia-los ap6s método de coleta simples. Um exemplo dessa avaliacdo pode ser por
observacgdes do numero e forma das células, esporos, hifas ou outras estruturas microbianas em
microscopios em amostras tratadas com corantes e fixadas (Bottomley, 1994).

Em avaliacbes semi-direta, as amostras do solo sdo submetidas a algum processo ou
tratamento mais complexo que causa pouca ou nenhuma alteracdo na caracteristica a ser
estudada. Como exemplo, pode-se citar a microscopia de alta resolucdo associada ao uso de
antigenos corantes, fluorescentes e sondas moleculares (Moreira e Siqueira, 2006).

As avaliacGes indiretas sdo bem mais complexas que as anteriores, baseando-se em
premissas. Exemplos de avaliacGes indiretas: meios de cultivo com diferentes graus de
seletividade para grupos fisioldgicos que podem incluir fatores de estresse para selecdo de
espécies resistentes e tolerantes; analise de biomarcadores, incluindo DNA diretamente extraido
do solo; caracterizacdo morfologica, fisiologica, bioquimica e genética dos organismos isolados
(Moreira e Siqueira, 2006).

Avaliacdes de processo e atividade podem ser analises de substratos e produtos das
reacOes bioquimicas como exemplo: por técnicas isotopicas, diversos tipos de cromatografia
(HPLC), titulometria, bioiluminescéncia, calorimetria e colorimetria. Além disso, microscopia
de alta resolugdo também entra nessa classificacdo, caracterizando a influéncia de

microorganismos na microestrutura do solo (Moreira e Siqueira, 2006).
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Em geral, recomenda-se que os dados de microbiologia sejam complementados com
propriedades fisicas, quimicas e bioldgicas do solo. Dentre as andlises fisicas e quimicas
podemos citar: topografia, analises das rochas e solos, pH, infiltracdo de agua, teor de umidade,
granulometria, status de CO, e O», densidade dos solidos, variagdes de temperatura e dados
pluviométricos. A cobertura vegetal, o indice de produtividade, histérico de vegetacdo,
abundancia de animais no solo, biomassa microbiana, presenca de raizes e matéria organica sdo
alguns dos fatores importantissimos que fazem parte das propriedades bioldgicas do solo
(Kandeler, 2007).

Além disso, apds a coleta do solo é de extrema importancia guardar as amostras na
geladeira a 4°C para posterior analise microbioldgica. Quando as amostras de solo sdo secas ao
ar livre, pode ocorrer uma reducéo na populacdo microbiologica proporcional ao tempo em que
a amostra fica descongelada. Além disso, é necessario armazenar a amostra em sacos plasticos
com espessura de 0,025 mm, que juntamente com o ambiente refrigerado, proporcionam a
amostra o desenvolvimento de condicdes anaerdbicas (Bottomley et al., 1994). E recomendado
gue as amostras ndo sejam congeladas, pois a estrutura da matéria organica pode sofrer danos.
A duracdo que a amostra fica no refrigerador também pode interferir no resultado posterior.
Como por exemplo, Gordon (1998) observou que apds trés meses de armazenamento de
amostras de solo a 4°C, o nimero de organismos diminuiu em comparacdo com a avaliacdo no
tempo zero, exceto para 0 grupo Actinobacteria. Portanto é recomendado fazer a coleta de
forma correta e seu armazenamento também, até a realizacdo das analises microbioldgicas para

que os resultados ndo sofram alteracdes devidos a erros experimentais.

6.4.1. Isolamento e identificacdo de DNA no solo

A primeira etapa para analise do DNA ¢ sua extracdo em quantidade e pureza que
permitem a identificacdo da origem genética. Existem duas técnicas para o isolamento: extracdo
de celulas e lise direta. No primeiro a extracdo das células precede a extracdo de DNA e no
segundo o DNA e diretamente do solo (Moreira e Siqueira, 2006). A extracédo direta do DNA
envolve: lise das células, separacdo do DNA de outros componentes celulares (polissacarideos
e proteina), liberacdo do DNA das particulas do solo, purificagdo do DNA extraido e por tltimo
a precipitacdo do DNA.

Segundo Moreira e Siqueira (2006), a caracterizacdo do DNA extraido pode ser

realizada por diversas técnicas simples ou combinadas. A primeira delas é a hibridizagdo DNA-
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DNA. Essa técnica consiste em emparelhamento com sondas de DNA conhecido radioativo ou
ndo para verificagdo do grau de homologia, ou seja, se h& similaridade ou identidade de
sequencias ou deteccdo de sequencias de DNA especificas. O desenvolvimento desse método
foi primeiramente descrito no inicio da década de 70, trazendo novas contribuicbes para a
sistematica bacteriana, permitindo o agrupamento dos organismos de acordo com sua
semelhanca genética (Rossell6-Mora e Amann, 2001).

A segunda técnica € polimorfismo em comprimento de fragmentos obtidos por restricao
enzimatica. Neste caso, o fragmento especifico do DNA extraido ¢ amplificado por PCR,
cortado com enzima de restricdo, e 0 que resultou é submetido a eletroforese para deteccao da
variabilidade de seu peso molecular. A Figura 2 exibe uma exemplificacdo esquematica de

como funciona essa técnica:

Figura 2 - Técnica de polimorfismo em comprimento de fragmentos obtidos por restricdo

enzimatica.

Eco RI Eco RI Eco RI EcoRI

i A i §

4 Kb 6 Kb 2 Kb

DNA a)
b)

¢
— GAATTC —

c)
— CTTAAG —
Mutacio d)

10 Kb 2Kb

ioe)

Fonte: Darini et al. (1998)

A letra (a) indica a sequéncia de bases de DNA, com 4 sitios de restricdo para a enzima
Eco RI; o (b) indica o numero e o tamanho em Kb dos fragmentos de restri¢cdo obtidos apos
digestdo com Eco RI; (c) mostra em detalhes o sitio de restricdo da Eco RI; (d) é a indicacdo de
mutacdo na sequéncia de bases que esta em detalhe; (e) nimero e tamanho em Kb dos
fragmentos de restricdo apds a mutacdo (Darini et al., 1998).

O DNA extraido do solo pode ser analisado por outras técnicas como o DGGE
(denaturing gradient gel electrophoresis) e 0 TGGE (temperature gradient gel electrophoresis).
Em ambas, o0 DNA é extraido de amostras do solo com comunidades mistas e fragmentos de
DNA especificos (16s rDNA) e sdo amplificados por PCR (Reacdo em Cadeia da Polimerase)
(Muyzer, 1998).
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A PCR que foi desenvolvida na década de 1980 e redescoberta por Kary Mullis e
colaboradores em 1993, teve um grande impacto em biologia molecular, ciéncia forense,
diagnostico de doengas genéticas humanas, entre outros. A PCR encontra sua principal
aplicacdo em situacdes onde a quantidade de DNA disponivel é pequena. Resumidamente, a
técnica amplifica uma Unica ou poucas cépias de um pedago de DNA e baseia-se no processo
de replicacdo do DNA que ocorre in vivo. Durante a PCR elevadas temperaturas separam as
moléculas de DNA em duas cadeias simples, permitindo entdo a ligacdo de oligonucleotideos
iniciadores (primers), também em cadeia simples e geralmente constituidos por 15 a 30
nucleotideos, obtidos por sintese quimica. Entéo, os dois pares de primers sdo acrescentados na
reacdo. Se a determinada sequéncia estiver presente na amostra, ela sera multiplicada milhares
de vezes, podendo configurar uma reacdo positiva (Alberts et al., 2011). A Figura 3 exibe um

esquema representativo de como ocorre a PCR.

Figura 3 - Esquema com as etapas da PCR.
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Adaptado: Bruces et al. (2011)
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6.4.2. Eletroforese em Gel com Gradiente Desnaturante

Técnicas de impresséo digital genética providenciam um padréo ou perfil da diversidade
genética em uma comunidade microbiana. A DGGE foi proposta por Muyzer, de Waal e
Uitterlinden em 1993, e consiste em separar fragmentos de DNA de mesmo comprimento, mas
com sequéncias diferentes. A separacdo é baseada na mobilidade descrescente eletroforética de
uma molécula de DNA dupla fita, parcialmente dissociada em gel de poliacrilamida, contendo
um gradiente linear de DNA desnaturante (uma mistura de ureia e formamida). Os fragmentos
dissociados de DNA prosseguem em distintos dominios de dissociacao: extensdes de pares de
bases com idénticas temperaturas de dissociacdo (Cattony, 2001). Uma vez que o dominio com
a menor temperatura de dissociacdo alcanca sua temperatura de dissociacdo em uma posi¢édo
particular no gradiente do gel desnhaturado, a migracdo da molécula ira praticamente parar.
Variagdes de sequencias dentro de tais dominios causam uma diferenca nas temperaturas de
dissociacdes e moléculas com sequencias diferentes irdo parar de migrar em posi¢oes diferentes
no gel (Muyzer, 1998). Usando DGGE, 50% das variantes das sequencias podem ser detectadas
em fragmentos de DNA até 500 pb (pares de bases). Esta porcentagem pode aumentar para
proximo de 100% se anexada sequéncia rica em GC (guanina e citosina), o chamado GC-
Clamp, em um lado do fragmento de DNA.

Esta técnica ja foi utilizada por diversos autores para verificar os microorganismos e a
diversidade microbiana em solos contaminados por elementos potencialmente téxicos (Muller
et al., 2001; Li et al., 2006; Wang et al., 2007; Dell’Amico et al., 2008; Sobolev e Begonia
2008; Martinez-Inigo et al., 2009).
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Figura 4 - Amostras de mesmo comprimento, mas com diferentes sequéncias de pares de bases,
detectadas pelo método de DGGE.

GENE SELVAGEW,
N, ACGTTG GEL DE DGGE
MUY ,,'/ TGCAAC N\l 4%
GENE MUTANTE = it
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AL -~/ YGCCAC ‘ \'::*q_
——/ 65%

Fonte: Cattony (2001)

Figura 5 - Dissociacdo da molécula de DNA no gel desnaturante da forma helicoidal para a

forma de um fragmento parcialmente dissociado.

Dominlo de Dissoctagito

Dupla Fita de DNA
Completa Separacito das
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Aumento da Concentragfio de Desnaturante

Fonte: Cattony (2001)

6.4.3. Sequenciamento de nova geracao (SNG)

Duas técnicas foram as precursoras na corrida pelo entendimento da sequéncia do
material genético, 0 método quimico de degradacdo de bases (Maxam e Gilbert, 1977) e o
método didesoxi ou terminacdo do fragmento (Sanger et al., 1978). Os dois metodos séo
baseados na producédo de um conjunto de fitas simples de DNA que séo separadas pelo principio
de eletroforese (Okubo et al., 1992). Quando comparadas as duas técnicas, 0 método de Sanger
gera dados que sdo mais facilmente interpretados, por isso essa técnica tem sido utilizada até

os dias atuais.
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Figura 6 - Esquema representando desoxinucleotideo e didesoxinucleotideos, que se
diferenciam pela auséncia da hidroxila (OH) no carbono 3’ do didesoxinucleotideo;
Representacdo do sequenciamento pelo método de Sanger, no qual em cada tubo é adicionado
um tipo de didesoxinucleotideo marcado junto com os demais desoxinucleotideos. Apds varios
ciclos de reacdo de amplificacdo, os produtos dos tubos sdo submetidos a eletroforese,

permitindo a leitura das sequéncias.

Desoxinucleotidea Didesoxnucleotideo

ddATP ddTTP ddCTP ddGTP
L — L —] w3 |

PRS00 0OO0O>

Fonte: Giusti et al. (2016).

Em 2005, as novas tecnologias de sequenciamento, denominadas de sequenciamento de
nova geracdo (SNG) comecaram a ser comercializadas. Foi lan¢ado o sequenciador 454 (Life
Sciences) que anunciou a técnica de sequenciamento por sintese, onde cada base era lida a
medida que fosse adicionada ao fragmento de DNA recém-formado (Schuster, 2008),
diferentemente do método de Sanger, onde a base lida era verificada pela marcacéo fluorescente
e pelo peso molecular da molécula contendo a sequéncia parcial do DNA através de uma anélise
eletroforeética. O 454 era capaz de produzir 25 milhdes de pares de bases com preciséo de 99%
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ou mais em apenas uma analise de quatro horas na maquina. Desde entdo, novas tecnologias
com relagdo ao sequenciamento foram desenvolvidas.

A tecnologia SNG da Illumina ocorre da seguinte forma: o processo identifica as bases
de DNA, enquanto as incorpora na cadeia de &cido nucleico. Cada base emite um sinal
fluorescente Unico a medida que é adicionada a cadeia de crescimento. Esta cadeia de
crescimento, por sua vez, é utilizada para determinar a ordem da sequéncia de DNA.

Como os dados gerados pelo SNG revelam a diversidade e o potencial da comunidade
microbiana, esse tipo de estudo tem sido aplicado com fins biotecnoldgicos, principalmente na
area de biorremediacdo de ambientes contaminados por diversos poluentes, incluindo os
organicos (como hidrocarbonetos e pesticidas) e/ou inorganicos (elementos potencialmente
toxicos) (Videira e Cunha, 2018). Inumeros trabalhos ja foram publicados utilizando esta
técnica como forma de detec¢do da comunidade de microbiota (Morais et al., 2016; Mesa et al.,
2017; Jing et al., 2017; Kasemodel et al., 2019) contando também com muitos trabalhos que ja
foram citados anteriormente ao longo do texto.

Além disso, nos ultimos anos houve a popularizacéo do uso do sequenciamento de alto
rendimento para a caracterizacdo da diversidade de organismos presentes em comunidades
bioldgicas de ambientes sob impacto de atividades antropogénicas. A gendmica ambiental além
de ampliar as possibilidades de acesso a diversidade e composic¢do da microbiota do solo, tem
a vantagem de seguir algumas estratégias baseadas em taxonomia, métricas estruturais da
comunidade e métricas funcionais da comunidade (Cordier et al., 2020).

Assim como descrito em Silva et al. (2021), a maioria dos trabalhos atuais estdo
utilizando o sequenciamento de alto rendimento com uma abordagem chamada de
metabarcoding 16S rDNA para realizar a caracterizagdo taxonomica das comunidades
procarioticas do solo. Os estudos com o gene 16S rRNA foram iniciados por Carl Woese que
argumentou que esta molécula era um excelente marcador molecular (Atlas e Bartha, 1998). A
utilizacdo desse gene revolucionou os estudos da ecologia microbiana, possibilitando assim a
investigacdo e determinacdo de posi¢des filogenéticas de comunidades bacterianas no meio
ambiente (Ludwig et al., 1997; Hentschel et al., 2002).
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7. CONSIDERACOES FINAIS

A introducdo e 0 avanco de técnicas cada vez mais elaboradas que auxiliam na deteccao
e caracterizacdo da microbiota do solo sdo importantes ferramentas para que se aprimore ainda

mais e que os resultados sejam mais acurados e precisos.

E importante seguir passo a passo do que é recomendado para cada analise, desde os
procedimentos para a coleta do solo, armazenamento dessas amostras, até a realizagdo da

caracterizagdo microbioldgica.

De uns anos para cd, o assunto ganhou mais notoriedade e a maioria dos trabalhos
encontrados foram de 2005 até 2021. Por todos os trabalhos encontrados e citados nesta
monografia, fica claro que a comunidade microbiolégica depende muito do elemento
potencialmente toxico envolvido e sua concentracao, do local de ocorréncia da contaminacao,
dos parametros do solo que estdo diretamente ligados a essa resposta ao contaminante (pH, Eh,
CTC, matéria organica, entre outros), da atividade antropogénica que interfere nesse ambiente,
do tempo que esta atividade ocorreu, do clima do local, e do tempo que a area ficou abandonada.
Todos esses fatores mostram que a lacuna existente no ambito de caracterizacao microbiolégica
¢ justamente comparar em um mesmo ambiente com as mesmas condicBes, e com todos 0s
elementos toxicos, fazer a descricdo da microbiota existente e suas relacdes intraespecificas.
Além disso, estudos microbioldgicos sdo um complemento de estudos fisicos e quimicos das
areas contaminadas, pois a caracterizacdo biologica também é uma importante ferramenta que

pode auxiliar na recuperacdo e biorremediacdo dessas areas.
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